MULTIMEDIA UNIVERSITY Faculty of Engineering PEM2056/PEM2062: Mathematics Techniques **Tutorial: Numerical Methods**

1. Find the largest interval in which p^* must lie to approximate p with relative error at most

(a) 10^{-3} for the value of p is 150 (b) 10^{-4} for the value of p is π . $[(149.85, 150.15), (0.9999 \pi, 1.0001 \pi)]$

- 2. Perform the following computation (i) exactly, (ii) using three-digit chopping arithmetic, and (iii) using three-digit rounding arithmetic. (iv) Compute the relative errors in parts (ii) and (iii).
 - (a) $\left(\frac{1}{3} \frac{3}{11}\right) + \frac{3}{20}$ (b) $\left(\frac{2}{3} + \frac{10}{11}\right) + \frac{3}{20}$ [(a) 139/660, 0.211, 0.210, 2×10⁻³, 3×10⁻³ (b) 1 479/660, 1.72, 1.73, 3×10⁻³, 2×10⁻³] (a) $\left(\frac{1}{3} - \frac{3}{11}\right) + \frac{3}{20}$
- 3. Suppose that fl(y) is a k-digit rounding approximation to y. Show that

$$\left|\frac{y - fl(y)}{y}\right| \le 0.5 \times 10^{-k+1}$$

[Hints: If $d_{k+1} < 5$, then $fl(y) = 0.d_1d_2 \dots d_k \times 10^n$.
If $d_{k+1} \ge 5$, then $fl(y) = 0.d_1d_2 \dots d_k \times 10^n + 10^{n-k}$].

- 4. Consider a very limited binary normalized floating-point system in which there are four bits to store the positive numbers. Assume that the first digit of the mantissa is included.
 - (a) What positive numbers can be represented if two bits are used for digits and two for exponents?
 - (b) What positive numbers can be represented if three bits are used for digits and one for exponents?

 $[(a) \frac{1}{2}, \frac{3}{4}, 1, 1\frac{1}{2}, 2, 3, 4, 6, (b) \frac{1}{2}, \frac{5}{8}, \frac{3}{4}, \frac{7}{8}, 1, 1\frac{1}{4}, 1\frac{1}{2}, 1\frac{3}{4}]$

5. Define

$$f(x) = \frac{1 - \cos(x)}{x^2}, \qquad g(x) = \frac{[\sin(x)/x]^2}{1 + \cos x}, \qquad h(x) = 2\left[\frac{\sin(\frac{x}{2})}{x}\right]^2.$$

- (a) Show that f(x) = g(x) = h(x), if they exists for the x in the question.
- (b) Identify, for each of f, g and h, those ranges of x, if any, which lead to subtractive cancellation when they are evaluated as they stand. (1999)

6. In some situations, loss-of-significance errors can be avoided by rearranging the function begin evaluated. Do something similar for the following cases:

(a) $\sin(a + x) - \sin(a)$, x is near to 0 (b) $\log(x + 1) - \log(x)$, x large (c) $\sqrt{9 + x^2} - 3$, if |x| is small (d) $\frac{1 - \sqrt{1 + x}}{\sqrt{x}}$, x is near to 0.

7. Suppose two points (x_0, y_0) and (x_1, y_1) are on a straight line with $y_1 \neq y_0$. Two formulas are available to find the *x*-intercept of the line:

$$x = \frac{x_0 y_1 - x_1 y_0}{y_1 - y_0}$$
, and $x = x_0 - \frac{(x_1 - x_0)y_0}{y_1 - y_0}$

Use the data $(x_0, y_0) = (1.31, 3.24)$ and $(x_1, y_1) = (1.93, 4.76)$ and three-digit rounding arithmetic to compute the *x*-intercept both ways. Which method is better and why? [(a) -0.00658, -0.0100 (b) second]

8. Construct the difference table

x	0	1	2	3	4	5	6	7
y(x)	0	0	0	1	1	0	0	0

Suppose that all y(x) should be zero, but 1's are the errors. Observe the effect of adjacent "errors" of size 1.

$$[\Delta^5 y: 5, 0, -5; \Delta^6 y: -5, -5]$$

9. Compute the missing values in the following table.

f(x)	$\Delta f(x)$	$\Delta^2 f(x)$
•		
		1
		4
6	3	13
	·	18
	·	24

[f(x): 0, 0, 1, 6, 24, 60, 120]

10. Prove
$$\Delta_h(\log x_k) = \log\left(1 + \frac{h}{x_k}\right)$$
.

.

11. Use LIP of degrees 1, 2 and 3 to approximate *f*(8.4) if *f*(8.1) = 16.94410, *f*(8.3) = 17.56492, *f*(8.6) = 18.50515, *f*(8.7)=18.82091. [*x*=8.3, 8.6, *f*(8.4)=17.87833; *x*=8.3, 8.6, 8.7, *f*(8.4)=17.87716; *x*=8.1, 8.3, 8.6, 8.7, *f*(8.4) = 17.87714]

If the data is generated using the function

$$f(x) = x \ln x.$$

Find a bound for the error and compare the bound to the actual error for the case of degree 2.

 $[1.367 \times 10^{-5}, 1.452 \times 10^{-5}]$

12. Construct the interpolating polynomial for the unequally spaced points in the following table:

x	f(x)
0.0	-6.00000
0.1	-5.89483
0.3	-5.65014
0.6	-5.17788
1.0	-4.28172

If f(1.1) = -3.99583 is added to the above table, construct the new interpolating polynomial.

- $[P_4(x) = -6 + 1.05170x + 0.57250x(x 0.1) + 0.21500x(x 0.1)(x 0.3) + 0.063016x(x 0.1)(x 0.3)(x 0.6); P_5(x) = P_4(x) + 0.014159x(x 0.1)(x 0.3)(x 0.6)(x 1).]$
- 13. Complete the following divided-difference table. Hence, or otherwise, approximate f(3.2).

x_k	f[]	f[,]	<i>f</i> [,,]	f[,,,]	f[, , , ,]	_
1	0					
		341				
4						
_		781		•		
3			•		•	
1	2		50			
-1	-2	11	50			
		11				
•			ſ <i>Ŧ</i> ſ	1 · 38 /7· A	1.0. 336 319	<u>۱</u> ړ
			ŲL,,,	1.30, 47, 1[, ,	, <u>j</u> . 2 , <u>330.31</u>	54]

WNTan 2001/2002

3

14. Approximate f(0.05) using the following data and the Newton forward-difference formula.:

x	0.0	0.2	0.4	0.6	0.8
f(x)	1.00000	1.22140	1.49182	1.82212	2.22554

Use the Newton backward-difference formula to approximate f(0.65). [1.05126, 1.91555]

- 15. Let $P_3(x)$ be the interpolating polynomial for the data (0,0), (0.5, y), (1,3) and (2,2). Find y if the coefficient of x^3 in $P_3(x)$ is 6. [4.25]
- 16. Find the degree of the interpolating polynomial that interpolates the following data.

x	-1	0	2	3	4	7
f(x)	6	5	21	38	61	166

If the above data is taken from a polynomial, what can you say about the degree of f(x)? Explain your answer. (2000)

- 17. Determine the error bound for linear polynomial interpolation in approximating $f(x) = \sin(x-2)$ for an x in $\left[\frac{-p}{6}, \frac{p}{6}\right]$, Your answer should be in term of h, where $h = x_1 x_0$. [$h^2/8$]
- 18. Suppose you need to construct a table for the common logarithm function from x=1 to x=10 in such a way that linear interpolation is accurate to within 10^{-6} . Determine a suitable bound for the step size for this table. $[4 \times 10^{-3}]$
- 19. By using forward or backward numerical differentiation, complete the following table:

<i>x</i>	f(x)	$f \boldsymbol{c}(x)$
0.5	0.4794	
0.6	0.5646	
0.7	0.6442	

If the data were taken from $f(x) = \sin x$, compute the error bound and compare with the actual error.

[(0.852, 0.796, 0.796), error bound: 0.0282, 0.0322, 0.0322; or (0.852, 0.852, 0.796), error bound: 0.0282, 0.0282, 0.0322]

20. By using the quadratic interpolating polynomial, determine the numerical differentiation formulas that can be used to approximate fc(x) in the following table:

X	f(x)	f ¢ x)
1.1	9.025013	
1.2	11.02318	
1.3	13.46374	

Given that $f(x) = e^{2x}$, compute the actual error and compare with the error bound. [(17.770, 22.194, 26.618); error bound: 0.359033, 0.179517, 0.359033]

21. Approximate

$$\int_{0.5}^{1} x^4 dx$$

by using the trapezoidal rule and Simpson's rule with one interval. Find a bound for the error for both method and compare to the actual error.

 $[0.265625, 0.071875, 0.125; 0.1940104, 2.604 \times 10^{-4}, 2.6042 \times 10^{-4}]$

22. By using the composite trapezoidal rule and the composite Simpson's rule, approximate $\int_0^2 x^2 e^{-x^2} dx$ with

(a) 2 intervals
(b)
$$h = 0.25$$

[(0.404511, 0.422736), (0.421582, 0.422716)]

23. Suppose that f(0.25) = f(0.75) = a. Find *a* if the Composite Trapezoidal rule with n=2 gives the value 2 for $\int_0^1 f(x) dx$ and with n=4 gives the value 1.75.

[1.5]

- 24. Approximate the following integrals using Gaussian quadrature:
 - (a) $\int_{-1}^{1} e^{x} dx$, with n = 2. (b) $\int_{0}^{1} e^{x} dx$, with n=3(c) $\int_{0}^{p/4} (\cos x)^{2} dx$, with n=4. [2.342696, 1.718281, 0.642699]

25. Consider approximating integrals of the form

$$I(f) = \int_0^1 \sqrt{x} f(x) dx$$

in which f(x) has several continuous derivatives on [0,1]. Find a formula

$$\int_0^1 \sqrt{x} f(x) \, dx \approx w_1 f(x_1)$$

which is exact if f(x) is any linear polynomial. Hence, find

 $\int_0^1 \sqrt{x} e^{-x} \, dx \, .$

[2/3 f(3/5), 0.36587]

26. Find the constants c_0 , c_1 and x_1 so that

$$\int_0^1 f(x)dx = c_0 f(0) + c_1 f(x_1)$$

has the highest possible degree of precision.

[1/4, 3/4, 2/3, 2]

27. Determine constants a, b, c and d that will produce a quadrature formula

$$\int_{-1}^{1} f(x)dx = af(-1) + bf(1) + cf'(-1) + df'(1)$$

has degree of precision 3. [1,1,1/3,-1/3]

that has degree of precision 3.

- 28. Use Newtons's method to find solutions accurate to $|x_n x_{n-1}| < 10^{-4}$ for $x^3 2x^2 = 5$, for x in the interval of [1,4]. $[if p_0 = 2.5, p_4 = 2.69065]$
- 29. Show that the iteration formula for Newton's Raphson method in solving the equation $f(x) = x^m - a = 0$ to determine the root $\sqrt[m]{a}$ is of the form

$$x_{n+1} = \frac{1}{m} \left\{ (m-1)x_n + \frac{a}{x_n^{m-1}} \right\}.$$

Hence, use the iteration formula to solve for $\sqrt{6}$, to $|x_n - x_{n-1}| < 10^{-2}$. [If $x_0 = 2.5, x_2 = 2.4495$]

- 30. Solve the following linear system.
- (a) Perform your calculations in three-digit rounding arithmetic and by using Gauss elimination with partial pivoting.

$$58.9x_1 + 0.03x_2 = 59.2$$

-6.10x₁ + 5.31x₂ = 47.0
[10.0, 1.00]

(b) Perform your calculations in three-digit chopping arithmetic and by using Gauss elimination with

(i) partial pivoting,

(ii) scaled partial pivoting.

- 31. Find the first two iterations of the Gauss-Jacobi method for the following systems, using $\mathbf{x}^{(0)} = \mathbf{0}$.
 - (a)

$$10x_1 - x_2 = 9,$$

- $x_1 + 10x_2 - 2x_3 = 7,$
- $2x_2 + 10x_3 = 6.$

 $[x_1^{(2)} = 0.97, x_2^{(2)} = 0.91, x_3^{(2)} = 0.74.]$

(b)

$$3x_1 + 3x_2 + 7x_3 = 4,$$

$$3x_1 - x_2 + x_3 = 1,$$

$$3x_1 + 6x_2 + 2x_3 = 0.$$

$$[x_1^{(2)} = 0.1429, x_2^{(2)} = -0.3571, x_3^{(2)} = 0.4286.]$$

32. Repeat exercise 34 with Gauss-Siedel method.

[
$$x_1^{(2)} = 0.979, x_2^{(2)} = 0.9495, x_3^{(2)} = 0.7899.;$$

[(b) $x_1^{(2)} = 0.1111, x_2^{(2)} = -0.2222, x_3^{(2)} = 0.6190.$]